欢迎访问东莞市清溪启晨模具厂的网站!!
4常见问题
您的位置: 首页 ->  常见问题 -> 数控细孔放电的每个部件使用介绍
   机床采用的高速加工中心应具有较高的主轴转速、大的功率、高的刚性、高的动态性能以及良好的阻尼特性,并备有快速的控制系统。目前,加工模具的高速机床,主轴转速一般均在40000~42000(r/min.),如Mikro公司第一代高速铣削中心HSM400、HSM700和第二代的HSM600u(五轴联动高速铣削中心),DMG的DMC100V,Hermle的C800V(36000r/min.),Digma的700GC、850HSC,R歞ers的RFM600和PTW的Hi-Dyn(60000r/min.)等。这样的主轴转速基本上能满足常用小直径铣刀(2mm~12mm)的加工需要。但是对于更小直径的铣刀(0.2mm~1mm),这样的主轴转速就不能使刀具达到理想的切削速度。例如,当采用160m/min.的切削速度时,对于直径为1mm的铣刀就需要51000r/min.的主轴转速;而对于0.2mm的铣刀,则需高达250000r/min.的转速,而在主轴最高转速为42000r/min.的情况下,对于上述两种铣刀只能分别以132m/min.和26m/min.较低的切削速度进行铣削,例如一个齿轮模的加工,采用的最小铣刀直径为0.2mm,机床主轴最高转速为40000r/min.,此时只能达到25m/min.这样低的切削速度。因此,为适应微细切削的发展,需要开发更高转速的机床。
  目前,高速加工机床的轴加速度一般达1~2g,个别有达到3g(Mikron的HPM800)。较高的轴加速度,意味着机床具有较高的动态性能,这在加工模具的自由曲面、进给方向不断变化的情况下,仍可保持调定的进给速度。从而有利于提高模具自由曲面的加工精度和表面质量,据业界人士预测,机床的轴加速度在最近的3~4年内可望达到3~5g。
五轴联动高速加工中心虽在价格上要比三轴联动机床高很多,但它特别适合用来加工复杂曲面的型腔。在加工较深型腔和对凸台清根时,可以通过附加的两个回转轴(通过转矩电机直接驱动的C轴和B轴,可提供与直线轴相配匹的加速度和进给速度)的同步运动从而可采用悬伸较短的立铣刀,由此增强了刀具刚性,并避免刀具和刀杆与型腔壁的碰撞,减少了刀具加工时的抖动或刀具破损的危险,从而有利于提高模具的表面质量、加工效率和延长刀具的寿命。
  齿轮模:材质X155CVMo12-1,60HRC,最高进给速度5000mm/min,加工时间9小时
刀具
  数控细孔放电最常用的是小直径(12mm以下)立铣刀,主要有双刃球头铣刀、双刃圆刀片铣刀、端齿六刃立铣刀和装有两个可转位圆刀片的立铣刀。其中整体硬质合金立铣刀则具有圆跳动误差小和刚性高的优点。
  合适的硬质合金刀体、耐热的硬涂层和负的刀具角度是硬铣获得成效的重要刀具参数。铣刀主要采用具有很好韧性的精细晶粒(0.5μm~0.8μm)和超细晶粒(0.2μm~0.5μm)的硬质合金制成。刀具的耐磨性则通过具有较高抗氧化性能和较低内应力的氮铝化钛(TiAlN)或TiAlCN涂层来改善,单涂层厚度为(2~3)μm,采用PVD工艺进行涂敷。
  数控细孔放电目前,在有利的几何边界条件下,硬铣可以加工硬度为65HRC的工件,而在实际生产中,模具的硬度多数在47~54HRC范围内。
采用超细晶粒硬质合金和TiAlN涂层的铣刀,在硬铣时切削速度可达200~350m/min.,每转或每齿进给量为0.1mm~0.2mm。
  加工模具应尽可能采用粗铣和精铣两道工序,通过高速铣削铣去大部分材料余量,留接近成品轮廓的0.05mm加工余量,然后采用较小的行距宽度进行精铣。所采用的行距宽度在很大程度上影响到加工时间、质量和表面粗糙度。
  加工模具时由于采用的是细长的小直径铣刀,铣削时切屑厚度较小,切削速度又高,加工过程易受圆跳动误差和振动的影响。因此,要求刀夹不仅要具有回转对称的细长结构,同时还要具有刚性好、圆跳动误差小、夹持力大和滑转力矩高等特性。从综合性能看,目前最能满足这些要求的是一种采用空心锥柄(HSK)的热装冷缩式刀夹。这种刀夹的圆跳动误差仅为3μm(在悬伸长度为3×d的检验棒上测量),如对于装刀直径为6mm的刀夹,可传递22Nm的转矩。这种刀夹,在模具加工中已较普遍采用,用来装卸刀具的感应加热仪往往已作为模具高速加工机床的随机配套附件。
  为获得较长的刀具寿命和较好的加工表面质量,机床—刀夹—刀具系统的圆跳动误差应在12μm之内,最好不要超过10μm,这就需要选用比普通铣刀更精密的铣刀,这种铣刀的圆跳动误差一般要在5μm之内。这样,如把主轴的圆跳动误差(一般是:主轴直径φ70mm为2μm,φ90mm为2.5μm)、刀夹(3μm)和铣刀(5μm)的圆跳动误差按极限情况进行叠加,其总的圆跳动则达到10.5μm。
  数控细孔放电时,在切削刀刃上会产生很高的温度,如果采用冷却液进行冷却润滑时,会使刀具产生急剧的温度突变负荷,致使硬质合金刀体中组织产生微细裂纹。这样,刀具就会过早失效。因此,数控细孔放电时不宜采用冷却液进行冷却润滑,应采用干式硬加工。但是考虑到硬铣时的切削温度是随着工件硬度和切削速度的提高而增加,所以在工件硬度不是很高的情况下,在数控细孔放电时也可以考虑采用微量润滑。当工件硬度很高时,这种微量润滑也会引起硬质合金刀具产生强烈的热冲击负荷。因此,对于这类数控细孔放电应采用压缩冷空气进行吹除切屑,以避免产生热冲击负荷,刀具寿命一般能提高20~30%。此外,特别是对于六刃立铣刀,采用压缩空气吹屑还可避免加工时切屑的缠绕。
  采用压缩冷空气吹屑时,压缩空气的压力应至少达到6巴(0.6MPa)。例如,一个硬度为61HRC的模具,在数控细孔放电时,采用了压力为6巴,冷却至-30℃的压缩空气,根据德国Franken公司的介绍,这样的压缩冷空气不仅有利于吹除切屑,并且在最有利的情况下可使刀具的耐用度提高30%。
  在这里应提及的是,这里所采用的压缩冷空气是通过一个专门的涡流管装置将压缩空气加速至声速,在加速过程中,使其分离成冷、热两部分,并分别引出,由此所产生达-30℃度的冷空气,再通过装有喷咀的塑料软管对准铣刀刀刃进行吹屑。
数控细孔放电应遵循的原则
  模具的数控细孔放电,由于能获得较好的表面质量、显著短的加工时间、短的生产工艺流程和较低的加工费用而得到越来越广泛的应用。在数控细孔放电模具时,为较好的达到这些效果,应遵循下列原则:
  刀具的悬伸应尽可能短,而在热装冷缩式刀夹中刀具刀柄应有足够长的夹紧长度。
数控细孔放电应采用顺铣方式,以便提高刀具的寿命(至少20%)和获得较好的加工表面质量。立铣刀的圆跳动误差应尽可能小些。
  应放弃湿式加工,尽可能采用致冷的压缩空气进行吹屑和冷却刀具。应根据模具的材质、硬度和加工条件选用合适的切削速度和进给速度。粗铣时应尽可能切除大部分材料余量,即为精铣约留0.05mm的加工余量,免去半精铣工序以缩短生产工艺流程。